# Global dimension function on stability conditions and Gepner equations.

@article{Qiu2018GlobalDF, title={Global dimension function on stability conditions and Gepner equations.}, author={Yu Qiu}, journal={arXiv: Representation Theory}, year={2018} }

We study the global dimension function $\operatorname{gldim}\colon\operatorname{Aut}\backslash\operatorname{Stab}\mathcal{D}/\mathbb{C}\to\mathbb{R}_{\ge0}$ on a quotient of the space of Bridgeland stability conditions on a triangulated category $\mathcal{D}$ as well as Toda's Gepner equation $\Phi(\sigma)=s\cdot\sigma$ for some $\sigma\in\operatorname{Stab}\mathcal{D}$ and $(\Phi,s)\in\operatorname{Aut}\mathcal{D}\times\mathbb{C}$. We prove the uniqueness (up to the $\mathbb{C}$-action) of the… Expand

#### 3 Citations

Contractible flow of stability conditions via global dimension function

- Mathematics
- 2020

We introduce an analytic method that uses the global dimension function $\operatorname{gldim}$ to produce contractible flows on the space $\operatorname{Stab}\mathcal{D}$ of stability conditions on a… Expand

Serre dimension and stability conditions

- Mathematics
- 2019

We study relations between the Serre dimension defined as the growth of entropy of the Serre functor and the global dimension of Bridgeland stability conditions due to Ikeda-Qiu. A fundamental… Expand

Cambrian combinatorics on quiver representations (type A)

- Mathematics
- 2019

This paper presents a new geometric model of the Auslander-Reiten quiver of a type A quiver. We introduce a new Catalan object which we call a maximal almost rigid representation. We show that its… Expand

#### References

SHOWING 1-10 OF 24 REFERENCES

Contractible stability spaces and faithful braid group actions

- Mathematics
- Geometry & Topology
- 2018

We prove that any `finite-type' component of a stability space of a triangulated category is contractible. The motivating example of such a component is the stability space of the Calabi--Yau-$N$… Expand

Stability conditions on triangulated categories

- Mathematics
- 2002

This paper introduces the notion of a stability condition on a triangulated category. The motivation comes from the study of Dirichlet branes in string theory, and especially from M.R. Douglas's… Expand

STABILITY CONDITIONS AND QUANTUM DILOGARITHM IDENTITIES FOR DYNKIN QUIVERS

- Mathematics
- 2015

Abstract We study the fundamental groups of the exchange graphs for the bounded derived category D ( Q ) of a Dynkin quiver Q and the finite-dimensional derived category D ( Γ N Q ) of the… Expand

Gepner type stability conditions on graded matrix factorizations

- Mathematics, Physics
- 2013

We introduce the notion of Gepner type Bridgeland stability conditions on triangulated categories, which depends on a choice of an autoequivalence and a complex number. We conjecture the existence of… Expand

Deformed Calabi–Yau completions

- Mathematics
- 2009

Abstract We define and investigate deformed n-Calabi–Yau completions of homologically smooth differential graded (= dg) categories. Important examples are: deformed preprojective algebras of… Expand

Stability conditions on CYN categories associated to An-quivers and period maps

- Mathematics
- 2017

In this paper, we study the space of stability conditions on a certain N- Calabi-Yau (CYN) category associated to an An-quiver. Recently, Bridgeland and Smith constructed stability conditions on some… Expand

Braid group actions on derived categories of coherent sheaves

- Mathematics, Physics
- 2000

This paper gives a construction of braid group actions on the derived category of coherent sheaves on a variety $X$. The motivation for this is Kontsevich's homological mirror conjecture, together… Expand

Exchange graphs and Ext quivers

- Mathematics
- 2015

Abstract We study the oriented exchange graph EG ∘ ( Γ N Q ) of reachable hearts in the finite-dimensional derived category D ( Γ N Q ) of the CY-N Ginzburg algebra Γ N Q associated to an acyclic… Expand

Gepner Type Stability Condition via Orlov/Kuznetsov Equivalence

- Mathematics
- 2013

We show the existence of Gepner type Bridgeland stability conditions on the triangulated categories of graded matrix factorizations associated with homogeneous polynomials which define general cubic… Expand

Stability conditions and Kleinian singularities

- Mathematics
- 2009

We describe (connected components of) the spaces of stability conditions on certain triangulated categories associated to Dynkin diagrams. These categories can be defined either algebraically via… Expand